Hall, 1972) on the CDC 7600 computer at the University of London Computer Centre, which supplemented local facilities.

References

Bullock, J. I., Hobson, R. J. \& Povey, D. C. (1974). J. Chem. Soc. Dalton Trans. pp. 2037-2043.

Bullock, J. I. \& Jones, S. L. (1970). J. Chem. Soc. A, pp. 2472-2475.
Bullock, J. I. \& Jones, S. L. (1971). J. Chem. Soc. A, pp. $2351-2355$.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Dawson, B. (1960). Acta Cryst. 13, 403-408.
Freeman, A. J. \& Watson, R. E. (1961). Acta Cryst. 14, 231-234.
Greenhough, T. J. \& Ladd, M. F. C. (1978a). Acta Cryst. B34, 2619-2621.
Greenhough, T. J. \& Ladd, M. F. C. (1978b). Acta Cryst. B34, 2744-2752.
Hathaway, B. J. (1972). J. Chem. Soc. Dalton Trans. pp. 1196-1199.
Hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
Hathaway, B. J. \& Tomlinson, A. A. G. (1970). Coord. Chem. Rev. 5, 1-43.

Hobson, R. J., Ladd, M. F. C. \& Povey, D. C. (1973). J. Cryst. Mol. Struct. 3, 377-388.

Hoerni, J. A. \& Ibers, J. A. (1954). Acta Cryst. 7, $744-$ 746.

Hoppe, W. (1965). Angew. Chem. 74, 484-492.
Iverson, G., Lindberg, B. K. \& Tigri, N. (1972). Acta Chem. Scand. 26, 3005-3020.
Ladd, M. F. C. \& Povey, D. C. (1976). J. Cryst. Mol. Struct. 6, 205-215.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291294. Copenhagen: Munksgaard.

McKenzie, E. D. (1970). J. Chem. Soc. A, pp. 3095-3099.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J. P. (1977). MULTAN 77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Vogt, L. M. Jr, La Placa, S. \& Bednowitz, A. (1968). Am. Chem. Soc. Meet., Inorg. Divs., San Francisco. Paper 123.
Wong, R. Y., Palmer, K. J. \& Tomimcetsu, Y. (1976). Acta Cryst. B 32, 567-571.

Acta Cryst. (1980). B36, 2266-2269

The Structures of Methyl 3-Phenyldithiocarbazate and Its Derivative, Square-Planar $\operatorname{Bis}\left(\right.$ methyl N^{\prime}-phenyldiazenecarbodithioato- N^{\prime}, S)platinum

By Giulia Dessy and Vincenzo Fares
Laboratorio di Teoria e Struttura Elettronica e Comportamento Spettrochimico dei Composti di Coordinazione del CNR, 00016 Monterotondo Stazione, Italy

(Received 22 October 1979; accepted 3 April 1980)

Abstract

The crystal structures of the title compounds, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}$, (I), monoclinic, $a=10.262$ (2), $b=$ 5.939 (1), $c=17.363$ (4) $\AA, \beta=108.48$ (2) ${ }^{\circ}, Z=4$, space group $P 2_{1} / c, 934$ reflections, $R=0.030$, and its neutral platinum complex $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$, (II), triclinic, $a=5.883$ (2),$b=8.426$ (4), $c=9.767$ (3) \AA, $\alpha=72.43$ (3), $\beta=91.42$ (2), $\gamma=92.96(2)^{\circ}, Z=1$,

 space group $P \overline{1}, 3492$ reflections, $R=0.036$, have been determined from diffractometer data. The molecules of(I) have a trans-cis conformation and are coupled in dimers. The complex unit of (II) is monomeric: Pt occupies a centre of symmetry within a square-planar $\mathrm{S}_{2} \mathrm{~N}_{2}$ environment of two ligands in a cis-cis conformation.

Introduction

As part of an investigation on the methyl esters of the N-substituted dithiocarbazic acid $\quad R_{1} R_{2} \mathrm{~N}-\mathrm{N} R_{3}$ (c) 1980 International Union of Crystallography
$\mathrm{C}(\mathrm{S}) \mathrm{SCH}_{3}$, the behaviour of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNHC}(\mathrm{S}) \mathrm{SCH}_{3}(=$ $L \mathrm{H}_{2}$) as a ligand has been studied. Its neutral platinum complex $\left[\mathrm{Pt}\left\{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NNC}(\mathrm{S}) \mathrm{SCH}_{3}\right\}_{2}\right]\left(=\mathrm{Pt} L_{2}\right)$, obtained by oxidizing the complex [$\mathrm{Pt}\left\{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NNHC}(\mathrm{S}) \mathrm{SCH}_{3}\right\}_{2}$] $\left[=\operatorname{Pt}(L H)_{2}\right]$, has been isolated (Tarli, 1979).
$\mathrm{Pt} L_{2}$ belongs to a series of electron-transfer complexes of the type $\mathrm{PtN}_{2} \mathrm{~S}_{2}$ as studied by Forbes, Gold \& Holm (1971) and Jenson, Bechgaard \& Pedersen (1972). It is distinctive because of its intense blue colour in solution, with an absorption band in the visible region ($\lambda=720 \mathrm{~cm}^{-1} ; \varepsilon=10500$).

Its molecular and electronic structure can be formulated as a $\mathrm{Pt}^{\mathrm{IV}}$ complex, with a localized $\mathrm{C}=\mathrm{N}$ double bond:

or as a $\mathrm{Pt}^{\mathrm{II}}$ complex, in terms of a valence-bond structure (Forbes et al., 1971):

with extensive delocalization within the ligand plane.
In an attempt to clarify the problem by means of a structural determination, the X-ray analysis of the $\operatorname{Pt} L_{2}$ complex has been undertaken, together with an analysis of the free ligand, $L \mathrm{H}_{2}$, for comparison.

Experimental

Samples of both compounds [(I), pale yellow; (II), blue prisms] were provided by Dr F. Tarli. They are stable in air and the X-ray beam. Accurate cell dimensions and the orientation matrix were obtained by a least-squares fit to the setting angles of 15 reflections on a Syntex P2, four-circle diffractometer.

Crystal data

(I): $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}, M_{r}=198.31$, monoclinic, $a=$ 10.262 (2), $b=5.939(1), c=17.363$ (4) $\AA, \beta=$ $108.48(2)^{\circ}, U=1003.7 \AA^{3}$. Systematic extinctions: $h 0 l, l=2 n+1 ; 0 k 0, k=2 n+1$. Space group $P 2_{1} / c$. $D_{c}=1.31$ for $Z=4, D_{m}=1.30$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$ (by flotation). Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=0.46$ mm^{-1}.
(II): $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{PtS}_{4}, M_{r}=587.68$, triclinic, $a=$ $5.883(2), b=8.426(4), c=9.767$ (3) $\AA, \alpha=$ 72.43 (3), $\beta=91.42$ (2), $\gamma=92.96(2)^{\circ}, U=460.9$ \AA^{3}. Space group $P \overline{1}$ from the structure determination.
$D_{c}=2.12$ for $Z=1, D_{m}=2.09$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$ (by flotation). Mo $K \alpha$ radiation, $\mu=8.46 \mathrm{~mm}^{-1}$.

Data were collected on a Syntex $P 2_{1}$ automated diffractometer by the $\theta-2 \theta$ scan technique with graphite-monochromated Mo $K \alpha$ radiation. Only the intensities of the reflections having $I \geq 3 \sigma(I)$ were used in the refinement. The data were corrected for background and for Lorentz and polarization effects. A semi-empirical absorption correction, based on a 360° ψ scan around the scattering vector of the $4 \overline{1}$ reflection, was also applied only to the $\operatorname{Pt} L_{2}$ data.

Calculation

Data reduction, Patterson and Fourier syntheses, structure factors and geometrical calculations were carried out on an HP-21MX computer of the CNR Research Area of Rome (Montelibretti), while leastsquares refinements were performed on the Univac 1108 computer of Rome University. Neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1974).

Structure solution and refinement

Both structures were solved by Patterson and Fourier techniques and refined by a full-matrix leastsquares method. All non-hydrogen atoms had anisotropic temperature factors.

For (I), the H atoms were located from difference syntheses and were included in the refinement with isotropic temperature factors.

Each reflection was assigned a weight $w=\left(a+b F_{o}\right.$ $\left.+c F_{o}^{2}\right)^{-1}$ with $a=5 \cdot 0, b=1.0$ and $c=0.01$. The final R was 0.030 for 934 reflections.

For (II), the H atoms of the phenyl group were included at the calculated positions with an isotropic temperature factor of $4.5 \AA^{2}$.

Each reflection was assigned a weight $w=\sin \theta / \lambda$. The final R was 0.036 for 3492 reflections.

Results and discussion

Atomic parameters for (I) are given in Table 1.* The compound has a trans-cis conformation. The molecules are coupled in dimers through hydrogen bonds $\mathrm{S}(1) \cdots \mathrm{H}-\mathrm{N}(1)$ between the thione S atom and the imino group ($\mathrm{S}-\mathrm{H}=2.73 \AA$).

[^0]

The dimers are connected by a net of hydrogen bonds between $\mathrm{S}(1)$ and $\mathrm{H}(\mathrm{N} 2)$ of a symmetry-related amino group $(S-H=2.57 \AA$).

Table 1. Final atomic coordinates, with e.s.d.'s in parentheses, and equivalent isotropic thermal parameters, for (I)

	x	y	z	$B_{\text {eq }}^{*}\left(\AA^{2}\right)$
S(1)	0.35966 (9)	0.30110 (15)	0.47583 (5)	3.69
S(2)	0.09798 (9)	0.08934 (17)	0.36361 (7)	4.67
N(1)	0.3407 (3)	-0.0773 (5)	$0 \cdot 3973$ (2)	3.47
N(2)	0.2731 (3)	-0.2530 (5)	0.3472 (2)	$3 \cdot 50$
C(1)	0.2748 (3)	0.0988 (5)	0.4134 (2)	$3 \cdot 12$
C(2)	0.0400 (6)	0.3439 (12)	0.3987 (6)	$6 \cdot 37$
C(3)	0.2983 (3)	-0.2750 (5)	0.2720 (2)	2.99
C(4)	$0 \cdot 2580$ (4)	-0.4741 (6)	0.2287 (2)	$3 \cdot 68$
C(5)	0.2730 (4)	-0.4974 (8)	$0 \cdot 1533$ (2)	4.39
C(6)	0.3275 (4)	-0.3248 (8)	$0 \cdot 1201$ (2)	$4 \cdot 43$
C(7)	0.3677 (4)	-0.1327 (7)	$0 \cdot 1628$ (2)	$4 \cdot 16$
C(8)	$0 \cdot 3540$ (3)	-0.1034 (6)	0.2391 (2)	3.49
$\mathrm{H}(\mathrm{N} 1)$	0.419 (4)	-0.091 (7)	0.419 (2)	
H(N2)	0.275 (4)	-0.376 (7)	0.374 (2)	
H(C2)	0.061 (6)	0.332 (11)	0.450 (4)	
$\mathrm{H}^{\prime}(\mathrm{C} 2)$	-0.044 (5)	0.341 (8)	0.387 (3)	
$\mathrm{H}^{\prime \prime}(\mathrm{C} 2)$	0.066 (6)	0.476 (12)	0.376 (4)	
H(C4)	0.224 (3)	-0.587 (6)	0.252 (2)	
H(C5)	0.245 (4)	-0.637 (9)	0.127 (2)	
H(C6)	0.337 (4)	-0.337 (7)	0.073 (2)	
H(C7)	0.407 (4)	-0.011 (7)	0.144 (2)	
H(C8)	0.381 (3)	0.033 (7)	0.268 (2)	

Table 2. Main interatomic distances (\AA) and angles $\left(^{\circ}\right)$, with e.s.d.'s in parentheses, for (I)

$\mathrm{S}(1)-\mathrm{C}(1)$	$1.667(3)$	$\mathrm{C}(2)-\mathrm{H}^{\prime \prime}(\mathrm{C} 2)$	$0.95(7)$
$\mathrm{S}(1)-\mathrm{H}(\mathrm{N} 1)^{1}$	$2.73(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.392(5)$
$\mathrm{S}(1)-\mathrm{H}(\mathrm{N} 2)^{11}$	$2.57(5)$	$\mathrm{C}(3)-\mathrm{C}(8)$	$1.378(5)$
$\mathrm{S}(2)-\mathrm{C}(1)$	$1.747(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.373(6)$
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.800(8)$	$\mathrm{C}(4)-\mathrm{H}(\mathrm{C} 4)$	$0.91(4)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.396(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.378(6)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.323(5)$	$\mathrm{C}(5)-\mathrm{H}(\mathrm{C} 5)$	$0.95(5)$
$\mathrm{N}(1)-\mathrm{H}(\mathrm{N} 1)$	$0.76(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.353(6)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.415(5)$	$\mathrm{C}(6)-\mathrm{H}(\mathrm{C} 6)$	$0.86(5)$
$\mathrm{N}(2)-\mathrm{H}(\mathrm{N} 2)$	$0.86(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.386(6)$
$\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 2)$	$0.85(6)$	$\mathrm{C}(7)-\mathrm{H}(\mathrm{C} 7)$	$0.94(4)$
$\mathrm{C}(2)-\mathrm{H}^{\prime}(\mathrm{C} 2)$	$0.82(5)$		
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{C}(2)$	$102.0(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$119.8(3)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	$122.4(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.8(4)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$116.4(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.4(4)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$	$126.3(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.5(4)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$120.7(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.6(4)$
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$113.0(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$119.0(3)$

[^1]

Fig. 1. Perspective view of the molecular structure of methyl 3-phenyldithiocarbazate $\left(L \mathrm{H}_{2}\right)$, showing its trans-cis conformation.

In Table 2 interatomic distances are reported, and Fig. 1 shows the molecular structure of the chemical unit.
The $\mathrm{C}(1)-\mathrm{S}(1)$ and $\mathrm{C}(1)-\mathrm{N}(1)$ distances are in agreement with extensive conjugation in the ligand plane. The $\mathrm{N}(1)-\mathrm{N}(2)$ distance of 1.396 (4) \AA is not significantly different from that found in the nonsubstituted methyl ester of 1.415 (3) \AA (Manotti Lanfredi, Tiripicchio \& Tiripicchio Camellini, 1977).

The angles around $\mathrm{C}(1)$ are identical to those in the analogous trans-cis 3,3-dimethyl compound (Manotti Lanfredi et al., 1977), and are essentially determined by the steric hindrance of the cis-methyl group.

The H atoms of the methyl group are again gauche to the $\mathrm{C}=\mathrm{S}$ bond.

The $\mathrm{N}(2) \mathrm{N}(1) \mathrm{C}(1) \mathrm{S}(1) \mathbf{S}(2) \mathrm{C}(2)$ system is planar; the $\mathrm{N}(2)-\mathrm{C}(3)$ bond does not lie in the plane because of a rotation around $\mathrm{N}(1)-\mathrm{N}(2)$ of 68°. The rotation angle around $\mathrm{N}(2)-\mathrm{C}(3)$ with respect to the $\mathrm{N}(1) \mathrm{N}(2) \mathrm{C}(3)$ plane is 15°.

Atomic parameters for (II) are given in Table 3.* Fig. 2 shows the molecular structure of (II): the Pt atom occupies a centre of symmetry within a squareplanar $\mathrm{S}_{2} \mathrm{~N}_{2}$ environment. The ligand has a cis-cis conformation, the only steric arrangement possible to complex the Pt with the formation of a five-membered ring.

Fig. 2. Perspective view of the molecular structure of $\mathrm{Pt} L_{2}$. Since Pt is on a centre of symmetry, only one ligand molecule in a cis-cis conformation, is shown.

Table 3. Final atomic coordinates, with e.s.d.'s in parentheses, and equivalent isotropic thermal parameters, for (II)

	x	y	z	$B_{\text {eq }}^{*}\left(\AA^{2}\right)$
Pt	$0 \cdot 0$	0.0	$0 \cdot 0$	1.65
S(1)	0.2731 (3)	$0 \cdot 2066$ (2)	-0.0132 (1)	2.39
S(2)	0.6379 (3)	$0 \cdot 3171$ (2)	-0.2435 (2)	2.79
$\mathrm{N}(1)$	0.3351 (8)	0.0843 (6)	-0.2308 (5)	1.98
N(2)	$0 \cdot 1448$ (8)	-0.0077 (5)	-0.1770 (4)	2.28
C(1)	0.4048 (10)	$0 \cdot 1906$ (6)	-0.1618 (5)	$2 \cdot 19$
C(2)	0.7111 (13)	$0 \cdot 4326$ (8)	-0.1199 (7)	3.09
C(3)	0.0727 (9)	-0.1126 (6)	-0.2622 (5)	2.00
C(4)	0.2248 (11)	-0.2161 (7)	-0.2925 (6)	$2 \cdot 64$
C(5)	0.1607 (13)	-0.3102 (8)	-0.3841 (7)	2.95
C(6)	-0.0539 (13)	-0.2949 (8)	-0.4477 (6)	2.89
C(7)	-0.2052 (11)	-0.1905 (8)	-0.4177 (6)	2.73
C(8)	-0.1440 (10)	-0.0991 (7)	-0.3228 (5)	2.41

* As defined by Willis \& Pryor (1975).

Table 4. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$, with e.s.d.'s in parentheses, for (II)

$\mathrm{Pt}-\mathrm{S}(1) \quad 2.28$	2.284 (1)	$\mathrm{N}(2)-\mathrm{C}(3) \quad 1$.	1.429 (7)
$\mathrm{Pt}-\mathrm{N}(2) \quad 1.96$	1.966 (4)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$	1.378 (9)
$\mathrm{S}(1)-\mathrm{C}(1) \quad 1$.	1.705 (6)	$\mathrm{C}(3)-\mathrm{C}(8) \quad 1$.	1.388 (8)
$\mathrm{S}(2)-\mathrm{C}(1) \quad 1.7$	1.745 (5)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$.	$1 \cdot 397$ (10)
$\mathrm{S}(2)-\mathrm{C}(2) \quad 1.7$	1.798 (8)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$.	1.387 (10)
$\mathrm{N}(1)-\mathrm{N}(2) \quad 1.35$	1.353 (4)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1$	1.379 (10)
$\mathrm{N}(1)-\mathrm{C}(1) \quad 1.3$	1.318 (8)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$.	1.403 (9)
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{N}(2)$	82.6 (1)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	123.2 (4)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(1)$	$96 \cdot 5$ (2)	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	112.5 (4)
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{C}(2)$) 102.8 (3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	120.8 (5)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	1) 114.0 (5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.0 (6)
$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{N}(1)$	123.5 (4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.7 (7)
$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(3)$	$126 \cdot 1$ (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120 \cdot 1$ (7)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	3) 110.4 (5)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.4 (6)
S(1)-C(1)-S(2)	124.2 (3)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	119.0 (6)

The complex unit is monomeric, and no interaction $<3.4 \AA$ is present. The bond distances and angles (see Table 4), compared with the analogous ones of (I) $\left(L H_{2}\right)$, show no evidence of localized double bonds.

Although there is a significant shortening of the $\mathrm{N}-\mathrm{N}$ distance from 1.396 (4) \AA in $L \mathrm{H}_{2}$ to 1.353 (4) \AA in $\mathrm{Pt} L_{2}$, due to the absence of H atoms on the N atoms (which become $s p^{2}$ hybridized), the $\mathrm{N}(1)-\mathrm{N}(2)$ bond is not a pure double bond ($\mathrm{N}=\mathrm{N}: 1.25 \AA$). The distances within the ligand confirm that there is extensive conjugation over the whole molecule: in fact $\mathrm{C}(1)-$ $\mathrm{N}(1), \mathrm{C}(1)-\mathrm{S}(2)$, and $\mathrm{S}(2)-\mathrm{C}(2)$ are identical in $L \mathrm{H}_{2}$ and $\operatorname{Pt} L_{2}$. The lengthening of the $\mathrm{C}(1)-\mathrm{S}(1)$ distance is due to the donor function of S to Pt .

The $\mathrm{Pt}-\mathrm{S}$ and $\mathrm{Pt}-\mathrm{N}$ distances, compared with the analogous ones of 2.336 (7) and 2.06 (1) \AA in the thiosemicarbazide-platinum complex (Gastaldi \& Porta, 1972) in which Pt is again on a centre of symmetry in a trans $\mathrm{PtS}_{2} \mathrm{~N}_{2}$ environment, show a statistically significant shortening [2.284 (1) and 1.957 (4) \AA].

The evidence of extensive conjugation, and the values of the $\mathrm{Pt}-\mathrm{S}$ and $\mathrm{Pt}-\mathrm{N}$ distances attributable to the presence of a charge-transfer effect from the S and N atoms to Pt , leads us to exclude the formulation of $\mathrm{Pt} L_{2}$ in terms of $\mathrm{Pt}^{\mathrm{IV}}$. However, there are strong indications in favour of a $\mathrm{Pt}^{\mathrm{II}}$ complex.

References

Forbes, C. E., Gold, A. \& Holm, R. H. (1971). Inorg. Chem. 10, 2479-2485.
Gastaldi, L. \& Porta, P. (1972). Cryst. Struct. Commun. pp. 353-356.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jensen, K. A., Bechgaard, K. \& Pedersen, C. T. (1972). Acta Chem. Scand. 26, 2913-2922.
Manotti Lanfredi, A. M., Tiripicchio, A. \& Tiripicchio Camellini, M. (1977). J. Chem. Soc. pp. 417-422.
Tarli, F. (1979). Private communication.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.

[^0]: * Lists of structure factors and anisotropic thermal parameters for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35318 (31 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: Symmetry code: (I) $1-x,-y, 1-z$; (II) $x, 1+y, z$.

